چکیده
در این مقاله، یک روش تخمین (پیش بینی) فازور دینامیک اصلاح شده برای رله های حفاظتی ارایه شده است، تا فازور دینامیکی مولفه اصلی فرکانس را با دامنه متغیر-با-زمان، محاسبه کند. فرض شده است که جریان خطا، ترکیبی از آفست میرا شونده dc، یک فرکانس مولفه اصلی میرا شونده، و هارمونیک های با دامنه های ثابت است. توابع نمایی آفست dc در حال محو و مولفه اصلی فرکانس، با سری های تیلور جایگزین شده اند. سپس، از روش LC (کوچکترین مربع یا مجذور) برای تخمین دامنه ها و ثابت های زمانی مولفه های میرا شونده، استفاده شده است. عملکرد این الگوریتم، با بکاربری از سیگنال هایی که بر مبنای معادلات ساده و سیگنال های خطای بدست آمده از مدل مزرعه بادی DFIG در MATLAB Simulink شبیه سازی شده اند، ارزیابی شدند. نتایج نشان می دهند که الگوریتم ارایه شده ما می تواند تخمینی دقیق از دامنه میراشونده و ثابت زمانی مولفه اصلی فرکانس، ارائه دهد.
کلیدواژه: ژنراتورهای توزیع شده، فازور دینامیک اصلاح شده، تخمین فازور، جریان خطای متغیر با زمان
مقدمه
این روزها، علایق زیادی برای اتصال منابع مختلف انرژی برق که با عنوان منابع انرژی توزیع شده (DER) معروف هستند به سیستم های قدرت، وجود دارد. مقدار زیادی از این علاقه به دلیل تقاضای انرژی پاک، قابلیت اطمینان بالا، و کیفیت توان بهبود یافته، می باشد. DERها چندین امکان برای تبدیل انرژی و تولید برق، ارایه می دهند. منابع انرژی و مبدل های گوناگون، برای تولید برق با استفاده از آرایه های PV (پیل خورشیدی) ، توربین های بادی، مزرعه های بادی، میکروتوربین ها، موتورهای متناوب دیزولی و گاز طبیعی مرسوم، توربیین های با سوخت گاز، توربین های با بویلرهای گازی، و تکنولوژی های ذخیره انرژی بکار می روند [1].
چکیده
این مقاله، یک برنامه ریزی توان میکروشبکه برای 24 ساعت آینده را با استفاده از تکنیک تعهد واحد، توسط برنامه نویسی دینامیک، ارایه می دهد. سیستم تحت مطالعه، تشکیل شده از 12 ژنراتور فعال مبنی بر PV (پیل خورشیدی) مجهز به ذخیره سازی، و سه میکروتوربین گازی، می باشد. طبق پیش بینی انرژیِ موجود از ژنراتور خورشیدی، در دسترس بودنِ انرژی ذخیره شده، مشخصه های انتشار میکروتوربین و پیشبینی بار، یک سیستم مدیریتانرژی مرکزی، برنامه 24 ساعته آینده مراجع توان را برای سه میکروتوربین گازی و ژنراتورهای فعال، محاسبه می کند تا انتشار معادل CO2 توربین های گازی، کمینه شود.
اصطلاحات شاخص: شبکه هوشمند، انرژی تجدیدپذیر، بهینه سازی، کمینه کردن انتشار، مدیریت انرژی، تعهد واحد برنامه نویسی دینامیک
مقدمه
یکی از چالش های اصلی در دهه های اخیر، نیاز به کاهش انتشار گازهای آلاینده و نیز وابستگی به سوخت های فصیلی بوده است. این قضیه، منجر به نفوذ گسترده ژنراتورهای مبتنی بر انرژی تجدیدپذیر در سیستم قدرت، شده است. در گذشته، برق اساسا در نیروگاه های بزرگ تولید می شده است؛ ازینرو، سیستم های الکتریکی برای جریان انرژی یک جهتی از نیروگاه های بزرگ به مصرف کننده ها طراحی شده اند. در سال های اخیر، مقدار منابع انرژی توزیع شده (DER) متصل به سیستم های قدرت، افزایش یافته است. این دلیل تحقیقات گسترده در زمینه یکپارچه سازی و کنترل سیستم های الکتریکیِ تشکیل شده از مقدار زیادی DER (انرژی توزیع شده) ، می باشد. اگرچه، در سال های آینده، حتی استفاده بیشتر از ژنراتورهای مبتنی بر انرژی های تجدیدپذیر (REBG) ، پیشبینی می شود. اما توان حاصل از این ژنراتورها، وابسته به پیشبینی وضعیبت هوایی بوده و همیشه مطابق با منحنی بار نیست، که این موجب مشکلاتی برای اپراتورهای سیستم توزیع (DSO) می شود.
چکیده
پیشرفت های فناوری آرایه گیت قابل برنامه نویسی میدان FPGA موجب می شود که این فناوری، برترین اساس جهت نمونه برداری سریع العمل اولیه ای از سیستم های دیجیتال مجتمع به شمار رود. علاوه بر این در حالی که فناوری عقب می ماند، حفظ سیستم های مبتنی بر پردازنده جهت سبک کردن تاثیرات مضر رویداد های غیر منتظره استنتاج شده از تشعشع در حال مهم تلقی شدن است. در این متن، همکاری عمده این کار، یک خط مشی نمونه برداری سریع العمل اولیه جهت طراحی شراکتی سیستم های جاسازی شده قابل اطمینان با استفاده از FPGA است. این امر از طریق یک اساس سخت کردن پشتیبانی می شود که ترکیب روش های تحمل خطای فقط نرم افزار را با خط مشی های فقط سخت افزار با بیان چندین بررسی میان محدودیت های طراحی، قابلیت اطمینان و هزینه می پذیرد. به عنوان یک بررسی موردی، چندین سیستم جاسازی شده متحمل پرتو افشانی براساس یک نسخه مستقل از فناوری از پردازنده Picoblaze توسعه یافته است.
مقدمه
در سال های اخیر، کوچک سازی تصاعدی اجزای الکترونیکی منجر به پیشرفت های مهمی در ریزپردازنده ها گردیده است. گرچه این حقیقت دارای مزایا و معایبی است. پرمعناترین مزیت، افزایش شگفت انگیز عملکرد ریزپردازنده ها بوده است. گرچه در حالی که فناوری عقب می ماند، سطح منبع ولتاژ و تفاوت های خش (پارازیت) کاهش می یابد که باعث می شود که دستگاه های الکترونیکی کمتر قابل اطمینان شوند و ریزپردازنده ها بیشتر مستعد پذیرش خطاهای زودگذر القاء شده به وسیله تشعشع گردند. این خطاهای متناوب، خسارت های غیر دائمی را دامن نمی زنند بلکه ممکن است منجر به اجرای برنامه نادرستی به وسیله تغییر فرستنده های سیگنال یا مقادیر ذخیره شده شوند.
فهرست مطالب
عنوان صفحه
فصل اول… ۱
آشنایی با محیط کار… ۱
فصل دوم… ۲
مقدمه… ۲
پرتال چیست؟… ۳
تاریخچه پرتال… ۵
جنبه های کار کردی یک پرتال… ۸
معماری پرتال… ۲۲
مزایای پرتال سازمانی؟… ۲۴
تفاوت پرتال سازمانی با وب سایت؟… ۲۸
مردم به پرتال اعتماد ندارند… ۳۱
منابع… ۳۴
دسته: برق
حجم فایل: 1544 کیلوبایت
تعداد صفحه: 35
ترکیب منابع تجدید پذیر بهینه به منظور کمینه کردن تلفات انرژی سیستم توزیع+نسخه انگلیسی 2010
Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization
چکیده__ این قضیه که منابع انرژی تجدید پذیر، کلید زیربنای منبع انرژی قابل اطمینان هستند، بشدت قابل قبول است؛ زیرا این منابع هم پایان-ناپذیر بوده و هم نا آلاینده هستند. تعدادی از تکنولوژی های تجدید پذیر هم اکنون کاربرد تجاری دارند، جالب توجه ترین آنها توان بادی، فوتوولتیک، سیستم های خورشیدی گرمایی، بیومس (زیست توده) ، و اشکال مختلف توان هیدرولیک (با استفاده از انرژی های آب) هستند. در این مقاله، روشی برای تخصیص بهینه انواع گوناگون واحدهای تولید توزیع شده تجدیدپذیر (DG) ، در سیستم توزیع _بطوری که تلفات انرژی سالانه را کمینه کنیم_ ارایه شده است. این روش مبنی بر تولید یک مدل احتمالی تولید-بار می باشد که همه ی شرایط عملیاتی ممکن واحدهای DG (تولید توزیع شده) تجدیدپذیر را با احتمال آنها، ترکیب می کند، ازینرو این مدل را در یک مساله برنامه نویسی قطعی، جا می دهیم. مساله برنامه نویسی به عنوان یک برنامه نویسی غیرخطی عددصحیح مرکب (MINLP) ، با یک تابع هدف برای کمینه کردن هزینه تلفات انرژی سالانه سیستم، فرمولبندی شده است. محدودیت ها عبارتند از محدوده های ولتاژ، ظرفیت (قدرت) فیدر، بیشینه حد نفوذ، و اندازه مجزای واحدهای DG در دسترس. این روش پیشنهاد شده بر روی یک سیستم توزیع روستایی با بخش های مختلف _شامل همه ی ترکیبات ممکن واحدهای DG تجدیدپذیر_ اعمال شده است. نتایج نشان می دهند که یک کاهش چشمگیر در تلفات انرژی سالانه برای همه ی بخش های مختلف، بدست آمده است.
کلیدواژگان: تولید توزیع شده، برنامه ریزی سیستم توزیع، مرکب سوخت، عدم قطعیت.