چکیده: موتور القایی در صنعت بیشترین استفاده را دارد. بسیار مهم است که مطالعاتی در مورد اثرات کیفیت توان در بازده و قابلیت اطمینان موتور القایی انجام شود. اثر شرایط تغذیه نامتعادل بر روی عملکرد ماشین القایی سه فاز در محیط نرم افزار MATLAB/ SIMULINK آزمایش می شود. چندین نوع از خطاهای الکتریکی موتور القایی نظیر اضافه / کاهش ولتاژ، جابجایی فاز، ولتاژ نامتعادل، اضافه بار و خطای تک فاز به زمین آزمایش می شود. خطای اصلی بررسی شده در این مقاله، نامتعادلی منبع تغذیه می باشد. برای آنالیز رفتار موتور القایی در طی تغذیه ولتاژ نامتعادل، موتور القایی مدل شده با تئوری قاب مرجع در محیط نرم افزار MATLAB/ SIMULINK، خطاها ایجاد می شوند (اضافه ولتاژ متعادل، کاهش ولتاژ متعادل، اضافه ولتاژ نامتعادل و کاهش ولتاژ نامتعادل) و تغییرات پارامترهای موتور القایی مشاهده می شوند. تغییر در سرعت، تلفات روتور، بازده، گشتاور و ضریب توان محاسبه می شوند و در طی تغذیه با منبع نامتعادل، مشاهده می شوند.
پروژه کارشناسی ارشد برق
فایل محتوای:
پروژه کارشناسی ارشد برق
چکیده
در این مقاله، جمع کننده کامل (FA) نوینی ارائه می گردد که برای عملکرد با توانهای بسیار پایین بهینه سازی شده است. مدار مذکور، بر پایه گیتهای XOR اصلاح شده ایطراحی گشته که با هدف کمینه سازی مصرف توان در ناحیه زیرآستانه ای عمل می کنند. نتایج شبیه سازی شده با مدلهای استاندارد CMOS ۶۵ نانومتر انجام شده است. نتایج شبیه سازی، یک بهبود ۵ تا ۲۰ درصدی را در بازه فرکانسی ۱Khz تا ۲۰MHz و ولتاژهای تغذیه زیر ۰. ۳V نشان میدهد
فایل محتوای:
چکیده
کنترل بردار ورودی (IVC) تکنیک معروفی برای کاهش توان نشتی است. این روش، از اثر پشته های ترانزیستوری در دروازه های منطقی (گیت) CMOS با اعمال مینیمم بردار نشتی (MLV) به ورودی های اولیه مدارات ترکیبی، در طی حالت آماده بکار استفاده می کند. اگرچه، روش IVC (کنترل بردار ورودی) ، برای مدارات با عمق منطقی زیاد کم تاثیر است، زیرا بردار ورودی در ورودی های اولیه تاثیر کمی بر روی نشتی گیت های درونی در سطح های منطقی بالا دارد. ما در این مقاله یک تکنیک برای غلبه بر این محدودیت ارایه می کنیم؛ بدین سان که گیت های درونی با بدترین حالت نشتی شان را با دیگر گیت های کتابخانه جایگزین می کنیم، تا عملکرد صحیح مدار را در طی حالت فعال تثبیت کنیم. این اصلاح مدار، نیاز به تغیر مراحل طراحی نداشته، ولی دری را به سوی کاهش بیشتر نشتی وقتی که روشMLV (مینیمم بردار نشتی) موثر نیست باز می کند. آنگاه ما، یک روش تقسیم و غلبه که جایگزینی گیت های را مجتمع می کند، یک الگوریتم جستجوی بهینه MLV برای مدارات درختی، و یک الگوریتم ژنتیک برای اتصال به مدارات درختی، را ارایه می کنیم. نتایج آزمایشی ما بر روی همه مدارات محک MCNC91، نشان می دهد که 1) روش جایگزینی گیت، به تنهایی می تواند 10% کاهش جریان نشتی را با روش های معروف، بدون هیچ افزایش تاخیر و کمی افزایش سطح، بدست آورد: 2) روش تقیسم و غلبه، نسبت به بهترین روش خالص IVC 24% و نسبت به روش جایگذاری نقطه کنترل موجود 12% بهتر است: 3) در مقایسه با نشتی بدست آمده از روش MLV بهینه در مدارات کوچک، روش ابتکاری جایگزینی گیت و روش تقسیم-و-غلبه، به ترتیب می توانند بطور متوسط 13% و 17% این نشتی را کاهش دهند.
کلیدواژه: جایگزینی گیت، کاهش نشتی، مینیمم بردار نشتی
مقدمه
همزمان با کوچک شدن فناوری VLSI و ولتاژ منبع/آستانه، توان نشتی در مدارات CMOS امروزه دارای اهمیت بیشتر و بیشتر شده است. به عنوان مثال، در طراحی ها نشان داده شده است که توان نشتی زیرآستانه می تواند به بزرگی 42% توان کل تولید فرآیند 90 نانومتری شرکت داشت باشد [11]. بدین ترتیب، روش های زیادی اخیرا برای کاهش مصرف توان نشتی ارایه شده اند. فرآیند ولتاژ آستانه دوگانه، از وسایل با ولتاژ آستانه بیشتر، به همراه مسیرهای غیر بحرانی، استفاده می کند تا جریان نشتی را ضمن تثبیت عملکرد، کاهش دهد [16]. روش های CMOS ولتاژ آستانه چندگانه (MTCMOS) ، یک وسیله با ولتاژ Vth بالا را بطور سری با مدار با Vth پایین قرار داده، و یک ترانزیستور sleep می سازد.
چکیده
سیستم های قدرت مدرن، نیازمند افزایش هوش و انعطاف پذیری در کنترل و بهینه سازی هستند، تا از قابلیت تثبیت تعادل میان بار و تولید به دنبال تداخلات جدی اطمینان حاصل شود. این قضیه امروز، به سبب افزایش تعداد ریزشبکه ها (MG) ، در حال یافتن اهمیتی بیش از پیش است. ریزشبکه ها اغلب از انرژی های تجدیدپذیر برای تولید توان الکتریکی استفاده می کنند، که تولید توان با این انرژی ها، طبیعتا متغیر است. این تغییرات و عدم قطعیت های رایج در سیستم قدرت، موجب می شود که کنترل کننده های قدیمی نتوانند عملکرد مناسبی را در بازه های گسترده شرایط عملیاتی، ارایه دهند. در پاسخ به این چالش، این مقاله یک روش هوشمند آنلاین جدید را، با آمیختن تکنیک های منطق فازی و بهینه سازی ازدحام ذرات (PSO) ، برای تنظیم بهینه معروف ترین کنترل کننده های مبتنی بر تناسبی-انتگرالی (PI) در سیستم های میکرو شبکه، ارایه می دهد. این روش طراحی کنترل، بر روی یک ریزشبکه AC به عنوان مورد آزمایشی تست شده است. عملکرد ترکیب کنترلی هوشمند ارایه شده، با روش های کنترل PI کاملا فازی و کنترل PI زیگلر-نیکولز، مقایسه شده است.
اصطلاحات شاخص: منطق فازی، کنترل هوشمند، ریزشبکه، تنظیم بهینه، بهینه سازی ازدحام ذره، کنترل فرکانس ثانویه
مقدمه
افزایش نیاز به توان الکتریکی، موجب شده است تا بسیاری از منابع غیرمعمولی نیز وارد سیستم قدرت شوند، که این منابع، پیچیدگی و عدم دقت سیستم را افزایش می دهند. از منابع انرژی های نو (تجدیدپذیر) (RES) ، اغلب بعنوان واحدهای تولید کننده جایگزین در یک سیستم قدرت مدرن، استفاده می شود. افزایش نفوذ RESها (منابع انرژی های نو) ، دارای مزیت هایی می باشد، اما همچنین چالش های تازه ای را نیز به بار می آورد که آیا این منابع می توانند بطور پایدار در کنار واحدهای تولید کننده موجود، کار کنند یا نه. برخی از چالش های فنی که توسط منابع انرژی های نو ایجاد می شوند، تعمیر و نگهداری و حفاظت از RESها می باشد که این مسایل، در رگولاسیون ولتاژ و فرکانس سیستم، و نیز در طرح کنترلی مناسب هم در حالت متصل به شبکه، و هم در حالت جدای از شبکه تاثیر می گذارند.
خلاصه
در این مقاله، یک کنترل کننده برای خازن های سری با سوییچ تریستوری (TSSC) ارایه می گردد. کنترل کننده در نظر دارد، با میرا کردن نوسانات توان درون-منطقه ای و با بهبود پایداری گذرای سیستم، سیستم قدرت را پایدار نماید. به علاوه، یک ویژگی پخش بار در این کنترل کننده قرار داده شده است. کنترل کننده میراکننده نوسانات توان، مبنی بر یک قانون کنترل غیرخطی طراحی شده است، درحالیکه ویژگی بهبود پایداری گذرا بصورت حلقه باز کار می کند. کنترلر میراگر، تطبیقی بوده و پارامترهای سیستم قدرت را بر طبق یک مدل کلی ساده شده از یک سیستم قدرت دو-ناحیه ای، تخمین می زند. این برای سیستم هایی طراحی شده است که دارای یک حالت غالب با میرایی ضعیف نوسانات توان می باشند. در این مقاله، یک بررسی بر روی کنترلر توسط شبیه سازی های دیجیتالی سیستم قدرت دو-ناحیه ای چهار-ماشینه، و سیستم قدرت 23-ماشینه انجام می پذیرد. نتایج نشان می دهند که کنترل کننده، پایداری هر دو سیستم تحت آزمایش را بطور چشمگیری در تعدادی موارد خطا در سطوح متفاوت پخش بار اینرسی، بهبود می بخشد. اصطلاحات مربوط: کنترل پخش بار، میرایی نوسانات توان (POD) ، خازن های سری با کنترل تریستوری (TCSC) ، خازن های سری با سوییچ تریستوری (TSSC) ، پایداری گذرا.
مقدمه
طی چند دهه اخیر، ادوات سیستم های انتقال ac انعطاف پذیر (اودات FACTS) ، گزینه ای برای بهبود پایداری و حل مشکل پرباری در سیستم های قدرت امروز که معمولا تا سرحد محدودیت های امنیتیشان پربار می شوند بوده و هستند. این ادوات که بر پایه الکترونیک قدرت هستند، با کنترل تزریق توان اکتیو و راکتیو در سیستم قدرت، یا با تغییر مشخصه های شبکه بوسیلۀ کنترل راکتانس های خط یا زاویه های ولتاژ در نقاط بحرانی، عمل می کنند. در این مقاله، یک کنترل کننده برای خازن های سری با سوییچ تریستور (TSSC) ارایه می شود. این ابزار، قادر به تغییر راکتانس ظاهری یک خط، در چند مرحله گسسته، می باشد. این کنترل کننده با استفاده از یک تکنیک پیوسته توسعه داده شده است، که آن را برای استفاده با ادواتی همچون خازن های سری با کنترل تریستور (TCSC) نیز که دارای کنترل راکتانس پیوسته هستند مناسب می سازد.