دسته: فنی و مهندسی
حجم فایل: 1304 کیلوبایت
تعداد صفحه: 12
آنتروپی تخمینی به عنوان اندازه ای از سیستم پیچیده
خلاصه
روش هایی برای تعیین کردن تغییرات مربوط به پیچیدگی سیستم از داده های ارزیابی شده وجود دارد. همگرایی یک فرکانس با استفاده از الگوریتم بعد هم بستگی نسبت به یک مقدار معین می باشد که ضرورتا نشان دهنده مدل انتخابی نمی باشد. آنالیزهای اخیر خانواده ای از فرمول ها و آمارها را برای تخمین زدن تقریبی آنتروپی یا ApEn را فراهم ساخته است که پیشنهاد می کنند که ApEn می تواند به عنوان سیستم های پیچیده طبقه بندی شود و حداقل 1000 داده را در مجموعه های گوناگونی مشخص سازد کعه شامل هم بی نظمی های مهم و فرایندهای اتفاقی می شود. توانایی برای تغییر دادن پیچیدگی تصمیم از چنین مقدار کوچک مرتبط در مورد داده ها برای به کار بردن های ApEn در زمینه های مختلف حفظ شده است.
تلاش برای فهمیدن پدیده پیچیدگی، از طریق محققان علمی مورد بررسی قرار می گیرد که بی نظمی را به عنوان یک مدل ممکن در نظر گرفته اند. فرمول ها برای مشخص کردن رفتار بی نظمی در مشخصه های پوشش دار خاص از جاذبه های عجیب ارتقا یافته اند که نشان دهنده سیستم های دینامیکی طوللانی مدت می باشد. اخیرا مشخص شده است که در بیشتر مجموعه های غیر ریاضی فرمول های جدید الگوریتم هایی برای داده های سری های زمانی آزمایش به صورت اولیه برای آزمون آماری با دقت به کار می رود. در یکی از مقالات در این زمینه بحث شده بود که حضور بی نظمی های تعیین شده در مورد آنالیز داده ها وجود دارد و شامل تخمین های خطا براساس محاسبات ابعادی و آنتروپی می باشد. در حالی که آنالیزهای ریاضی سیستم های شناخته شده ای را تعیین می کنند که مورد علاقه هستند و دارای مسئله عمیق می باشند به گونه ای که کاربردهای الگوریتمی در آن ها و به خصوص در این جا خطرناک می باشد. حتی برای سیستم های بی نظم با ابعاد کم یک تعداد زیادی از نقاط برای به دست آوردن پوشش در این بعد و الگوریتم های آنتروپی مورد نیاز می باشد، اگر چه آن ها اغلب با تعداد نامناسبی از نقاط به کار برده می شوند. همچنین بیشتر آنتروپی ها و تعریف های ابعادی برای سیستم نویز به صورت ناپیوسته هستند. علاوه بر این تفسیرهای مربوط به مقادیر محاسبه شده ابعادی نیز مشاهده می گردد که به نظر می رسد که در حقیقت پایه و اساس کلی ندارد برای مثال تعداد متغیرههای آزاد یا معادله های متفاوت برای یک سیستم مدل مورد نیاز می باشد.
هدف از این مقاله ارتقا ادن یک مدل ریاضی برای خانواده ای از فذمولا ها و اعداد و ارقام آماری است که در آن ها آنتروپی تخمینی به صورت یک مفهوم کمی شده پیچیده ارائه میب گردد. ما سه سوال پایه ای در این زمینه می پرسیم 1- آیا می توان بی نظمی ها را از بعد پوششی یا آنتروپی محاسبه کرد2- اگر نه چگونه ما می توانیم آن را کمی کنیم و چگونه ابزارهایی در دسترس هستند؟ 3- اگر ما تلاش کنیم تا اندازه مربوط به سیستم پیچیده را استقرار دهیم که تغییر می کنند آیا ما می توانیم این کار را با نقاط داده ای کمتر و استحکام بیشتر در مقایسه با ابزارهای در دسترس موجود انجام دهیم؟
من نشان می دهم که یکی می تواند فرایند اتفاقی با بعد هم بسته 0 باشد و بنابراین پاسخ مربوط به 1 خیر می باشد. این نشان می دهد که فرایندهای تصادفی برای عبارت هایی موفق هستند که هم بسته هستند و می تواند ارزش های ابعادی معینی را ایجاد کند. یک فاز مربوط به پلات فضایی عبارت های پوشش دار در چنین موردی ممکن است سپس هم بستگی و ساختار را نشان دهد. این نشان دهنده مدل معینی می باشد. در این زمینه شکل های 4 الف و ب مربوط به بابلویانتاز و دستکس با هم مقایسه می گردند.
اگر یکی نتواند امیدوار برای استقرار یافتن بی نظمی باشد در نتیجه یکی تلاش می کند تا سیستم های پیچیده را از طریق تخمین زدن پارامتر تشخیص دهد. پارامترها اساسا مرتبط با بینظمی اندازه گیری بعد، مقدار اطلاعات ایجاد شده و طیف لیاپنو هستند. طبقه بندی کردن سیستم های دینامیکی از طریق آنتروپی و طیف لیاپنو از کارهای کولموگرو، سینایی و اسلدتس استنباط شده است اگر چه این کارها استناد به قضیه های ارگودیک دارد و نتایج برای مجموعه های احتمالی قابل کاربرد می باشد. فرمول های ابعادی به وسیله ساختاری تحریک می گردند که در محاسبه مربوط به آنتروپی شبیه به بعد هاسدورف و محاسبات مربوط به آن هستند. کاری تئوری بالا به معنای موثر بودن سیستم های دینامیکی معین، داده های نویزی یا تعیین کردن مجموعه ها نمی باشد. برای همه این فرمول ها و الگوریتم ها مقدار داده هایی که مورد نیاز می باشد به صورت پوشش دار به دست می آیند که به صورت غیر عملی بزرگ هستند. ولف و همکاران بین نقاط 10d و 30d نقاطی برای پر کردن بعد d در مجموعه بی نظم مورد نیاز می باشد. همچنین برای بیشتر فرایندهای تصادفی مدل های قابل پیش بینی برای برخی از سیستم های فیزیکی به صورت پیچیده پدیدار می شوند که با یک پارامتر کنترل تغییر می یابند چنان چه اندازه های فوق الذکر بدون تغییر باقی می مانند که اغلب با هر یک از مقادیر 0 یا بی نهایت هستند.
برای پاسخ دادن به سوال 3 من خانواده ای از پارامترهای سیستمی ApEn (m، r) را پیشنهاد می کنم و آن را به آمار ApEn (m، r، n) معرفی شده در منبع 7 مرتبط می کنم. تغییرات در این پارامترها به طور کلی موافق با تغییرات در فرمول های ذکر شده برای ابعاد کمتر سیستم های معین می باشد. تازگی ضروری برای پارامترهای ApEn (m، r) می تواند به عنوان یک سیستم وسیعی تشخیص داده شود و برای m کوچک به خصوص m=2 تخمین زدن ApEn (m، r) به وسیله ApEn (m، r، n) می تواند در ارتباط با نقاط کمتر به دست بیاید. این به صورت بالقوه به صورت سیستم ها با ابعاد کم به صورت سیستم های دوره ای و چندگانه با ابعاد گوناگون سیستم های بی نظم، تصادفی و ترکیبی شناخته می شود. در مجموعه تصادفی، روش های آنالیز برای محاسبه کردن ApEn (m، r) می تواند ApEn (m، r، n) را تخمین بزند و مقادیر مربوط به پوشش آماری را برای فرمول مربوط به همه مسائل قابل قبول را برای ابزارهایی تخمین بزند که بتواند همراه با خطوط احتمالی استقرار یابند.
چکیده
در این مقاله، مدل برنامه نویسی ریاضی و الگوریتم های تخصیص به منظور به حداقل رساندن مدت زمانبدی توان تطبیق و زمانبندی پیوند نسبت تطبیق در شبکه های بی سیم TDMA فضایی، توسعه داده می شود. مسئله مربوطه، مستلزم زمانبندی مشترک بهینه انتقال ها، در مسیر ارتباطی با دسترسی چندگانه بوده که در ادغام با تخصیص همزمان سطوح توان انتقال و نسبت داده در بین پیوندهای فعال بوده، در حالی که سطوح نسبت سیگنال به تداخل، به علاوه نویز (SINR) در گیرنده های مربوطه، مد نظر قرار می گیرد. ما اثبات می کنیم که این مسئله می تواند به صورت برنامه مختلط عدد صحیح (MILP) مدلسازی شده و نشان می دهیم که موارد ذکر شده، راه حلی را ارائه می دهد که شامل سطوح توان انتقال بوده و به شدت دارای بهینگی پارتو (Pareto-Optimal) می باشند. خاطر نشان می کنیم که این مسئله به صورت NP کامل می باشد. برای مقایسه، از فرمول MILP برای محاسبه زمانبندی بهینه برای شبکه های با تعداد کمی از پیوندهای مشخص شده و تعداد محدودی از سطوح نسبت داده استفاده می کنیم. ما به توسعه و بررسی الگوریتم ذهنی با پیچیدگی چندجمله ای برای حل مشکل، به طور موثر و قابل محاسبه می پردازیم. این الگوریتم بر مبنای ایجاد نمودار تداخل تطبیق نسبت کنترل شده توان، می باشد. به این ترتیب، زمانبندی مورد نظر، با استفاده از الگوریتم حریصانه برای ایجاد مجموعه مستقلی از این نمودار حاصل می شود. بر مبنای تحلیل های سیستم، برای شبکه های توضیحی کوچکتر نشان می دهیم که، رفتار عملکرد توسط الگوریتم های ذهنی مد نظر قرار می گیرد تا معمولا در 75 درصد از موارد حاصل شده توسط زمانبند بهینه قرار گیرند. همچنین نشان می دهیم که عملکرد الگوریتم ذهنی مورد نظر ما به طور میانگین، 20% بهتر از موارد حاصل شده تحت الگوریتم های قبلی بوده که برای استفاده تحت توان انتقالی ثابت و زمانبندی پیوند نسبت ثایت ایجاد شده اند.
کلیدواژه: نظریه ضوابط، نمودار، بهینه سازی ترکیبی، کنترل دسترسی متوسط، کنترل توان، انطباق نسبت
رشته: هنر آموز مکانیک خودرو
تاریخ آزمون: دفترچه سوالات عمومی شامل سال های 84 و 86 و 89 – دفترچه سوالات تخصصی تاریخ 1389/3/7
مواد امتحانی
50 سوال اختصاصی
3دفترچه سوال عمومی (60 سوال سال 84 / 60 سوال سال 86 / 100 سوال سال 89) – شامل دروس (ادبیات فارسی، معارف اسلامی، اطلاعات عمومی و سیاسی، ریاضی، کامپیوتر، زبان انگلیسی)
خلاصه
نیروی پیش بری و گشتاور ایجاد شده در طول انجام عملیات دریل کاری یا حفاری، دربرگیرنده اطلاعات با اهمیتی در رابطه با کیفیت حفره ایجاد شده و سطح مطلوب برای نوک مته می باشد. در این مقاله نیروها و گشتاور ایجاد شده در طول عملیات سوراخ کاری کامپوزیتهای کربنی، که در آنها از الیاف کربنی استفاده شده است، به کمک یک دریل یک شات مورد بررسی و تشریح قرار می گیرد. علائم موجود در دامنه زمانی بر مراحل تقسیم می شوند و مشکلات متداول و عیوب مرتبط با آنها در هر مرحله زمانی تشریح و بررسی می گردد. همچنین نشان داده می شود که چطور پوشش سطحی ابزارآلات و ضخامت قطعه کارها بر روی نیروی پیش بری و گشتاور ایجاد شده در طول عملیات سوراخ کاری تأثیر می گذارد. یافته های به دست آمده در این مقاله به منظور بهینه کردن و توسعه مدل های ریاضی مرتبط با افزایش حداکثری نیروی پیش بری به کار می روند که این مسئله در بخش دوم از همین مقاله ارائه شده است که می توان آن را منبعی ارزشمند برای بهینه سازی های آتی در زمینه سوراخ کاری کامپوزیتهای کربنی به وسیله مته های دریل یک شات دانست.
مقدمه
اگر چه الیاف کربنی از جنس فلز نمی باشند، اما سالهاست که در صنایع از این الیاف استفاده می شود و به اصطلاح می گویند: « آنرا مانند فلز ببُر» نتایج این نظریه معمولاً ایجاد پوشش های غیر معمول می باشد. در مواردی که ماندگاری ویژه بالا و کیفیت بالایی همچون نوک مته های دریل در سوراخ کاری کامپوزیتها مورد نظر است می توانیم کارایی دریل های پیچشی را بهبود ببخشیم. در این حالت موانعی در سوراخ کاری رشته های کربنی وجود د ارد. ذوب و قالب ریزی و صافکاری این سطوح در چنین شرایطی مورد توجه می باشد. ورق کاری را معمولاً به نحوی انجام می دهند که اثرات نیروهای اعمالی ایجاد لبه نکند. محققین مطالعات فراوانی بر روی این پدیده انجام داده اند. و برای دستیابی به چنین ورق کاری مطلوبی باید بر روی کنترل نیروهای رانشی در طول عملیات کار کرد.
دسته: برق
حجم فایل: 206 کیلوبایت
تعداد صفحه: 55
آدمی همواره کوشیده است برخی شیوههای ساده برای بلندکردن خود و موادمورد استعمال و بازخود را بالا ببرد. یکی از نخستین آسان اختراع آن ثبت شده به وسیلهریاضیدان پرآوازه. ارشمیدس در حدود 253 ق. م. بود. آسانسور وی یک بلندکن دستیبود که برای حمل یک شده بود. در مصر باستان احتمالاً نمونهای از نیروی بلندکردن بهوسیله بردگان برای ساختمان اهرام استفاده میکردند.
کارآموزی نصب و راه اندازی آسانسور شرکت برج پیما 50ص
تاریخچه محل کارآموزی
آسانسور Elevator
تاریخچه آسانسور:
آسانسور Elevator
یک آسانسور مسافربر چطور کار میکند؟
کنترلها
نگاهی گذرا بر مخترعان آسانسور
آسانسور Elevator
یک آسانسور مسافربر چطور کار میکند؟
کنترلها
ماشین آلات
جنبهها و کیفیتهای ایمنی
آسانسور سیلو
آسانسور از کجا میفهمد که چه وقت باید توقف کند؟
آسانسور
آسانسور حمل بار و مسافر
آسانسور خدماتی
آسانسور خودرو بر ساختمانهای خصوصی
ریل راهنما
تعریف سیستم مکانیکی و قطعات مربوطه
ج) سیستم ایمنی
چ) ضربه گیرها
ح) تجهیزات الکتریکی
خ) سیستم کنترلی
موتور و گیربکس بالابر
ترمزها
سیستم تعلیق کابین و مکانیزم تعادل
وزنه تعادل
هدایت کابین
مقررات ایمنی ریلهای راهنما
انواع کفشک راهنما
گاورنر سرعت غیرمجاز
سیستم ایمنی (پاراشوت)
ضربهگیرها:
مشخصات
دو نوع کلی از ضربهگیرها وجود دارد:
ضربهگیر پلی اورتان (جمع کننده انرژی)
ضربهگیر فنی (جمع کننده انرژی)
ضربه گیر روغنی (هیدرولیک) (مستهلک کننده انرژی)
مقررات ایمنی سیم بکسلها و ایمنیهای مکانیکی
درها و سردرها
مشخصات انواع دربها
درهای لولایی
درهای کشویی افقی
استانداردسازی آسانسور
کلیات
مراحل طراحی و اطلاعات ساخت آسانسور از آماده سازیچاهک تا بتون ریزی
مرحله 1) آماده سازی کف چاله آسانسور:
مرحله 2) تهیه نقشه:
مرحله 3) بتون ریزی کف چاهک:
مرحله 4) عملیات آهن کشی (سازه فلزی) چاهک آسانسور:
توضیح:
مرحله 6) ایجاد موتورخانه:
مرحله 7) دورچینی درب طبقات:
مرحله 8) اجرای کابلکشی و نصب تابلو برق سه فاز:
مرحله 9) بتونریزی سقف چاهک:
نکته مهم: رعایت موارد ایمنی: