معماری پردازنده قدرت کارآمد و پردازنده سلولی این مقاله پیش زمینه و استدلالی را در مورد بعضی از معماری ها و تصمیمات جهت طراحی در پردازنده سلولی، یعنی پردازنده ای که برای محاسبات فشرده و کاربردهای رسانه ای غنی پهنای باند که مشترکا توسط شرکت های سونی، توشیبا و IBM توسعه داده شده است، ارائه می دهد.
بخش بندی این مقاله به صورت زیر می باشد. بخش 2، به بحث در مورد بعضی از چالش هایی می پردازد که طراحان ریزپردازنده ها با ان مواجه می باشند و انگیزه ای را برای فعالیت در هر ترانزیستور به عنوان یک متریک رتبه اول برای کارایی طرح ایجاد می کند. بخش 3 به بحث در مورد افزایش معماری ریزپردازنده به نسبت این معیار متری می پردازد. بخش 4 به بحث در مورد بعضی از انتخاب های معماری دیگر که باعث بهبود کارایی طرح و عملکرد پیک پردازنده می گردد، می پردازد. بخش 5 به بحث در مورد بعضی از محدودیت های انتخاب های معماری که در بخش 3 معرفی شد، می پردازد، و SMP غیرهمگن را به عنوان ابزاری برای غلبه بر این محدودیت ها مطرح می کند. بخش 6 خلاصه ای از تشکیلات پردازنده سلولی را بیان می کند.
عملکرد در هر ترانزیستور به عنوان یک معیار متری معماران ریزپردازنده و معماران مبکرو در چند دهه گذشته تحت تاثیر دو معیار متری اولیه که عملکرد را مشخص می کند، قرار گرفته اند: که شامل عملکرد در هر سیکل (اعلب توسط تعداد دستورالعمل هایی که در هر سیکل پردازنده تکمیل می شود)، و بسامد طرح (برای نمونه، زمان سیکل طراحی که توسط 4 مبدل تاخیر اندازه گیری می شود) می باشد. در ادغام با قابلیت های فناوری (برای نمونه یک تریلیون ثانیه در هر fo4) و محدودیت های سیستم (برای نمونه شرایط دسته بندی، تنوع منبع تغذیه، تغییرات تصادفی نامطلوب در منبع، و شرایط حرارتی) می باشد. این موارد به تعیین فرکانس عملیاتی نهایی و عملکرد محصول نهایی می پردازد.
امروزه، معماران و معماران میکرو، و همچنین طراحان منطق و مدار، می بایست بازده توان را مد نظر قرار دهند، زیرا تقریبا تمام سیستم ها از پلتفرم موبایل تا کامپیوترهای شخصی و ایستگاه های کاری تا بزرگترین ابرکامپیوترها هم اکنون از نظر توان برقی محدود می باشند. این موارد نشان می دهد که می بایست از بازده توان به عنوان یکی از معیارهای متری و محرک طرح های ریزپردازنده ها استفاده کنیم.
تعدادی از این معیارهای متری از نظر بازدهی مد نظر قرار می گیرند، که در محدوده انرژی در هر فعالیت تا تاخیر- انرژی می باشد. هر یک از این معیارهای متری به موازنه عملکرد پردازنده از نظر بازدهی می پردازند و هر یک از این معیارهای متری می تواند مناسب باشد. به هر حال، در این مقاله، ما به بررسی عملکرد در هر ترانزیستور به عنوان یک معیار متری می پردازیم. این معیار متری، عملکرد را در هر وات تخمین می زنند در صورتی که مقدار ثابتی را در هر تاوان توان ترانزیستور مد نظر قرار دهیم. این فرایند زمانی منطقی می باشد که فناوری CMOS با عملکرد بالا مورد استفاده قرار گرفته و مقدار ثابتی از این توان به زیر استاندارد و جریانات تونل سازی اکسید مدخل افت کند، و زمانی که هدف بهینه سازی عملکرد تقویت بوده زمانی که بخش قابل توجهی از تراشه ها مورد استفاده قرار گیرد.
منطق فازی، یک شبکه عصبی و سیستم خبره است که برای ایجاد یک سیستم تشخیصی ترکیبی با یکدیگر ترکیب شده اند.با استفاده از چنین سیستمی ما یک روش جدید برای فراگیری مبانی دانش استفاده می کنیم. سیستم ما شامل یک سیستم خبره فازی همراه با یک بیس دانشی با منبع دوگانه است. دو سری قوانین لازم هستند، که به صورت استنباطی از مثالهای ارائه شده و به صورت استقرایی توسط فیزیک دانان بدست آمده اند. یک شبکه عصبی فازی سعی می کند که از داده های نمونه یاد گرفته و این اجازه را می دهد که قوانین فازی برای دانش پایه را استخراج کنیم.تشخیص electroencephalograms با تفسیر عناصر نموداری بعنوان یک نوع مشاهده در روش ما بکار گرفته می شود. نتایج اولیه نشان دهنده احتمالات مورد نظر با استفاده از روش ما می باشد.
روشهای تکراری شناسایی و ارزیابی پدیده خاص را کار تشخیصی می نامند، که یکی از کاربردهای اصلی برای هوش مصنوعی (AI) می باشد. با توجه به اینکه رنج وسیعی از چنین کاربرهای تشخیصی وجود دارد. اگرچه رنج وسیعی از چنین کاربردهای تشخیصی در پزشکی وجود دارد ولی این بخش مورد توجه استفاده کنندگام از هوش مصنوعی قرار دارد. عمومی ترین روشهای AI در بخش پزشکی مبتنی بر دانش و مدلسازی رفتار تشخیصی متخصصان است. انواع مختلفی از چنین سیستمهای خبره ای از زمانی که SHRTLIFFE روش SHRTLIFFE MYCIN را بعنوان یک سیستم خبره برای تشخیص آسیبهای خونی انسان طراحی و معرفی کرد، به وسیله پزشکان مورد استفاده قرار گرفته است. یکی از بزرگترین مشکلات بر سر راه طراحی یک سیستم خبره مناسب، گردآوری و دانش پایه آن است. ما روش جدیدی را معرفی می کنیم که در آن دانش پایه با منبع دوگانه به وسیله یادگیری قیاسی واستقرایی ایجاد می شود. شیکه های عصبی نیز از این راه برای تشخیص استفاده می کنند. آنها قادرند رابطه بین مجموعه داده ها را با داشتن اطلاعات نمونه که نشاندهنده لایه های ورودی و خروجی آنها است، یاد بگیرند.
در کاربردهای توان-بالا، بیشینه فرکانس سوییچینگ به دلیل تلفات گرمایی، محدود می شود. این، منجر به شکل موج های با اعوجاج زیاد می شود. در این کاربردها، بایستی شکل موج خروجی را با استفاده از سیستم های فیلتر پسیو حجیمی، فیلتر کرد. تکنیک مدولاسیون پهنای پالس کاهش هارمونیک انتخابی (SHMPWM) که هم اکنون ارایه می شد، شکل موج های خروجی تولید می کند که در آن اعوجاج هارمونیکی محدود بوده، و هنگامی که تعداد زاویه های سوییچینگ به اندازه کافی زیاد است، کدگذاری شبکه خاص را انجام می دهد. تکنیک مربوطه، پیش از این با استفاده از فرکانس سوییچینگ برابر با 750 Hz ارایه شده بود. در این مقاله، یک پیاده سازی مخصوص از روش SHMPWM که برای فرکانس های سوییچینگ پایین، بهینه سازی شده است، بررسی خواهد شد. نتایج آزمایشی، بدست آمده از اعمال SHMPWM به یک مبدل نقطه-خنثی-مهار شده (NPC) با استفاده از فرکانس سوییچینگ برابر با 350 Hz بدست آمده است. نتایج بدست آمده، نشان می دهند که تکنیک SHMPWM، نتایج تکنیک مدولاسیون پهنای پالس حذف هارمونیک انتخابی قبلی را به ازای فرکانس های کلیدزنی (سوییچینگ) خیلی پایین بهبود می بخشد. این حقیقت، بیان می دارد که روش SPWM در کاربردهای توان-بالا، بسیار کار آمد بوده و استفاده از آن موجب کاهش مهم عناصر فیلترینگ گران قیمت و حجیم، می شود.
فیلترها، اعوجاج هارمونیکی، سیستم های چند سطحی.
در کاربردهای توان-بالا، بایستی مولفه هارمونیکی شکل موج خروجی را تا حد امکان، کاهش داد تا از اعوجاج در شبکه جلوگیری شده و بیشینه بازده انرژی بدست آید. در این کاربردها، تلفات حرارتی در نیمه هادی های قدرت، بیشینه (ماکزیمم) فرمانس کلیدزنی آنها را به چند-صد هرتز محدود می کند، و مناسب ترین سیستم های قدرت برای استفاده در این کاربردها، مبدل های چند-سطحی هستند. بتازگی، پژوهش های زیادی، با توپولوژی های مبدل چند-سطحی مختلفی، ارایه شده اند، و عملکرد خوب آنها در کاربردهای توان-بالا، قابل مشاهده بوده است.
با توجه به نفوذ روز افزون سیستم های هیدرولیکی در صنایع مختلف وجود پمپ هایی با توان و فشار های مختلف بیش از پیش مورد نیاز است. پمپ به عنوان قلب سیستم هیدرولیک انرژی مکانیکی را که توسط موتورهای الکتریکی، احتراق داخلی و... تامین می گردد به انرژی هیدرولیکی تبدیل می کند. در واقع پمپ در یک سیکل هیدرولیکی یا نیوماتیکی انرژی سیال را افزایش می دهد تا در مکان مورد نیاز این انرژی افزوده به کار مطلوب تبدیل گردد. فصل اول درموردتقسیم بندی پمپ هاوآشنایی با انواع پمپ های جابه جایی مثبت وکاربردهای آن ومقایسه پمپ های دینامیکی وجابه جایی مثبت می باشد. فصل دوم به توضیح درموردتوربوپمپ ها، اجزای اصلی آنها، مثلث سرعت، منحنی مشخصه، بررسی پدیده کاویتاسیون، قوانین تشابه پمپها وسری وموازی بستن آنها، بررسی خوردگی درتوربوپمپ هاودرنهایت آشنایی مختصری درموردپمپ های کاربردی درصنعت پرداخته شده است.
یک خودرو برای داشتن راحتی بیشتر، نیاز به فنرهای خیلی نرم و انعطاف پذیر دارد. اما راحتی فقط هدف ما در ساخت یک خودرو نیست. ضمن اینکه باید بتواند سریع حرکت کند. ایمنی بالایی نیز باید داشته باشد. یعنی اینکه حالت پایدار خود را حفظ نماید. بنابراین برای اینکه خودرویی پایدار باشد تعلیق آن باید خاصیت ضربه گیری بالایی داشته باشد اما همین خاصیت، خود از راحتی سرنشین خودرو می کاهد. به این ترتیب می بینیم که در خودرو همیشه تضادی بین راحتی و ایمنی وجود دارد. مهندسین و متخصصین صنعت خودرو در بسیاری از کشورهای جهان تلاش زیادی کرده اند تا با استفاده از موادی چون فولاد، روغن و کائوچو به سطحی که در آن الزامهای راحتی و پایداری خودرو رعایت شده باشد برسند و در این راه به موفقیت هایی نیز دست یافته اند. اما در زمینه پیشرفت در افزایش سرعت خودرو، می توان گفت که تقریباً همه خودروسازان به سطح قابل توجهی رسیده اند. در مورد سرعت های بالا، باید بین راحتی و پایداری خودرو، یکی را انتخاب کرد. شرکتهای سازنده اتومبیلهای مسابقه، مسلماً پایداری خودرو را ترجیح می دهند، اما سازندگان خودروهای لوکس، راحتی را در اولویت کار خود قرار می دهند.
شناور بودن خودرو روی بالشتکی از هوا رویای مهندسین بود. در سال 1847 ((جان لوئیس)) اختراع خود را که در مورد فنرهای پتوماتیکی برای خودروهای راه آهن، لوکوموتیوها، خودروهای سنگین بود در مقاله ای به ثبت رساند. عنوان مقاله لوئیس ((الاستیسیته کامل هوای جو و کاربرد آن)) به عنوان یک جانشین برای فنرهای فلزی بود. به این ترتیب، لوئیس ادعا کرد که اختراع وی اولین فنر هوایی لاستیکی است. به کمک سیستم تعیین هوایی، دو مؤلفه راحتی و ایمنی را می توان یکجا در خودرو فراهم آورد. راز این کار در جایگزین نمودن خاصیت الاستیسیته گاز فشرده به جای فنرهای فولادی و قرار دادن بدنه خودرو بر روی چهار بالشتک پنوماتیک موجود در بالن های تعلیق می باشد.
مقدمه 1
1-1- دیدگاه سینماتیکی (مکانیزمی) 3
1-1-1- موقعیت مراکز و محور غلتش 3
1-1-2- غلت فرمان 5
1-1-3- لغزش کناری چرخ ها 5
1-1-4- زاویه کجک 5
1-2- دیدگاه نرمی: 7
1-2-1- گشتاور غلتشی 7
1-2-2- جابجایی کناری بار 7
1-2-3- قرار پذیری 7
1-2-4- نرخ سختی چرخ 8
1-3- لزوم فنربندی خودروها 8
1-4- قسمت فنربندی شده و فنربندی نشده خودرو 9
2-1- فنر مارپیچ 12
2-2- فنرهای تخت 13
2-3- میله پیچشی : 15
2-4- فنرهای هوایی: 16
3-1- سیستم تعلیق یکپارچه 21
3-1-1- سیستم تعلیق هاچکیس 25
3-1-2- سیستم تعلیق دودیون 26
3-2- سیستم تعلیق مستقل (جداگانه) 27
3-2-1- سیستم تعلیق مک فرسون استرات واسترات دمپر 30
3-2-2- سیستم تعلیق طبق دار دوبل 35
3-2-3- سیستم تعلیق بازوی کشنده اکسل عقب 38
3-2-4- سیستم تعلیق شبه بازوی کشنده اکسل عقب 41
3-2-5- سیستم تعلیق چند میله ای 43
3-3- سیستم تعلیق نیمه مستقل 45
3-3-1- سیستم تعلیق میله پیچشی 46
3-3-2- سیستم تعلیق محور آونگی 48
4-1- بررسی مدل کامل خودرو 55
4-1-1- ترمز گیری و حرکت در پیچ: 56
5-1- فنرهای هوائی 61
5-1-1- سوپاپ کنترل ارتفاع با میراکننده 64
5-1-2- سوپاپ کنترل ارتفاع الکتریکی: 70
5-1-3- مخزن هوا: 70
5-1-4- کنترل کننده های مخزن: 71
5-1-5- کمک فنرهای پر شده با گاز 71
5-1-6- کمک فنرهای هوایی: 72
5-2- کنترل ارتفاع اتوماتیک 73
5-2-1- نوع اول: با کمک فنر 74
5-2-2- نوع دوم با استوانه لاستیکی هوا (کیسه هوا) 75
5-3- سیستم تعلیق هوایی با کنترل الکترونیکی: 76
5-3-1- سنسور ارتفاع 77
5-3-2- واحد کنترل الکتریکی (ECU): 78
5-3-3- شیر کنترل هدایتگر سه راهه: 78
6-1- تعلیق هوایی برای خودرو تجاری 90
6-1-1- سوپاپ ارتفاع 92
6-1-2- سوپاپ جدا کننده 94
6-1-3- کیسه های فنر هوا 95
6-1-4- بلوک های لاستیکی ضد رول 97
6-1-5- ویژگی های فنر هوایی 98
6-1-6- فنرهای فلزی یا صلب 98
6-2- سیستم تعلیق هوایی کنترل الکتریکی: 100
6-2-1- سویچ فشار کمپرسور: 102
6-2-2- سنسور ارتفاع: 102
7-1- سیستم تعلیق ایستا 104
7-2- سیستم تعلیق پویا 106
7-2-1- سیستم های تعلیق اکتیو 110
7-2-2- سیستم تعلیق نیمه اکتیو 113
9- نتیجه گیری 119
10- منابع و مآخذ 121
فهرست شکلها 122